tao_z
2021-07-10 4a89e24804b91902def506a9e898293fa36ccb59
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
/*!
    \file    gd32e23x_rcu.c
    \brief   RCU driver
    
    \version 2019-02-19, V1.0.1, firmware for GD32E23x
*/
 
/*
    Copyright (c) 2019, GigaDevice Semiconductor Inc.
 
    All rights reserved.
 
    Redistribution and use in source and binary forms, with or without modification, 
are permitted provided that the following conditions are met:
 
    1. Redistributions of source code must retain the above copyright notice, this 
       list of conditions and the following disclaimer.
    2. Redistributions in binary form must reproduce the above copyright notice, 
       this list of conditions and the following disclaimer in the documentation 
       and/or other materials provided with the distribution.
    3. Neither the name of the copyright holder nor the names of its contributors 
       may be used to endorse or promote products derived from this software without 
       specific prior written permission.
 
    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF SUCH DAMAGE.
*/
 
#include "gd32e23x_rcu.h"
 
/* define clock source */
#define SEL_IRC8M       0x00U
#define SEL_HXTAL       0x01U
#define SEL_PLL         0x02U
 
/* define startup timeout count */
#define OSC_STARTUP_TIMEOUT         ((uint32_t)0x000FFFFFU)
#define LXTAL_STARTUP_TIMEOUT       ((uint32_t)0x03FFFFFFU)
 
/*!
    \brief      deinitialize the RCU
    \param[in]  none
    \param[out] none
    \retval     none
*/
void rcu_deinit(void)
{
    /* enable IRC8M */
    RCU_CTL0 |= RCU_CTL0_IRC8MEN;
    while(0U == (RCU_CTL0 & RCU_CTL0_IRC8MSTB)){
    }
    /* reset RCU */
    RCU_CFG0 &= ~(RCU_CFG0_SCS | RCU_CFG0_AHBPSC | RCU_CFG0_APB1PSC | RCU_CFG0_APB2PSC |\
                  RCU_CFG0_ADCPSC | RCU_CFG0_CKOUTSEL | RCU_CFG0_CKOUTDIV | RCU_CFG0_PLLDV);
    RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF | RCU_CFG0_PLLMF4 | RCU_CFG0_PLLDV);
    RCU_CTL0 &= ~(RCU_CTL0_HXTALEN | RCU_CTL0_CKMEN | RCU_CTL0_PLLEN | RCU_CTL0_HXTALBPS);
    RCU_CFG1 &= ~(RCU_CFG1_PREDV);
    RCU_CFG2 &= ~(RCU_CFG2_USART0SEL | RCU_CFG2_ADCSEL);
    RCU_CFG2 &= ~RCU_CFG2_IRC28MDIV;
    RCU_CFG2 &= ~RCU_CFG2_ADCPSC2;
    RCU_CTL1 &= ~RCU_CTL1_IRC28MEN;
    RCU_INT = 0x00000000U;
}
 
/*!
    \brief      enable the peripherals clock
    \param[in]  periph: RCU peripherals, refer to rcu_periph_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_GPIOx (x=A,B,C,F): GPIO ports clock
      \arg        RCU_DMA: DMA clock
      \arg        RCU_CRC: CRC clock
      \arg        RCU_CFGCMP: CFGCMP clock
      \arg        RCU_ADC: ADC clock
      \arg        RCU_TIMERx (x=0,2,5,13,14,15,16): TIMER clock
      \arg        RCU_SPIx (x=0,1): SPI clock
      \arg        RCU_USARTx (x=0,1): USART clock
      \arg        RCU_WWDGT: WWDGT clock
      \arg        RCU_I2Cx (x=0,1): I2C clock
      \arg        RCU_PMU: PMU clock
      \arg        RCU_RTC: RTC clock
      \arg        RCU_DBGMCU: DBGMCU clock
    \param[out] none
    \retval     none
*/
void rcu_periph_clock_enable(rcu_periph_enum periph)
{
    RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph));
}
 
/*!
    \brief      disable the peripherals clock
    \param[in]  periph: RCU peripherals, refer to rcu_periph_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_GPIOx (x=A,B,C,F): GPIO ports clock
      \arg        RCU_DMA: DMA clock
      \arg        RCU_CRC: CRC clock
      \arg        RCU_CFGCMP: CFGCMP clock
      \arg        RCU_ADC: ADC clock
      \arg        RCU_TIMERx (x=0,2,5,13,14,15,16): TIMER clock
      \arg        RCU_SPIx (x=0,1): SPI clock
      \arg        RCU_USARTx (x=0,1): USART clock
      \arg        RCU_WWDGT: WWDGT clock
      \arg        RCU_I2Cx (x=0,1): I2C clock
      \arg        RCU_PMU: PMU clock
      \arg        RCU_RTC: RTC clock
      \arg        RCU_DBGMCU: DBGMCU clock
    \param[out] none
    \retval     none
*/
void rcu_periph_clock_disable(rcu_periph_enum periph)
{
    RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph));
}
 
/*!
    \brief      enable the peripherals clock when sleep mode
    \param[in]  periph: RCU peripherals, refer to rcu_periph_sleep_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_FMC_SLP: FMC clock
      \arg        RCU_SRAM_SLP: SRAM clock
    \param[out] none
    \retval     none
*/
void rcu_periph_clock_sleep_enable(rcu_periph_sleep_enum periph)
{
    RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph));
}
 
/*!
    \brief      disable the peripherals clock when sleep mode
    \param[in]  periph: RCU peripherals, refer to rcu_periph_sleep_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_FMC_SLP: FMC clock
      \arg        RCU_SRAM_SLP: SRAM clock
    \param[out] none
    \retval     none
*/
void rcu_periph_clock_sleep_disable(rcu_periph_sleep_enum periph)
{
    RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph));
}
/*!
    \brief      reset the peripherals
    \param[in]  periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_GPIOxRST (x=A,B,C,F): reset GPIO ports
      \arg        RCU_CFGCMPRST: reset CFGCMP
      \arg        RCU_ADCRST: reset ADC
      \arg        RCU_TIMERxRST (x=0,2,5,13,14,15,16): reset TIMER
      \arg        RCU_SPIxRST (x=0,1): reset SPI
      \arg        RCU_USARTxRST (x=0,1): reset USART
      \arg        RCU_WWDGTRST: reset WWDGT
      \arg        RCU_I2CxRST (x=0,1): reset I2C
      \arg        RCU_PMURST: reset PMU
    \param[out] none
    \retval     none
*/
void rcu_periph_reset_enable(rcu_periph_reset_enum periph_reset)
{
    RCU_REG_VAL(periph_reset) |= BIT(RCU_BIT_POS(periph_reset));
}
 
/*!
    \brief      disable reset the peripheral
    \param[in]  periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_GPIOxRST (x=A,B,C,F): reset GPIO ports
      \arg        RCU_CFGCMPRST: reset CFGCMP
      \arg        RCU_ADCRST: reset ADC
      \arg        RCU_TIMERxRST (x=0,2,5,13,14,15,16): reset TIMER
      \arg        RCU_SPIxRST (x=0,1): reset SPI
      \arg        RCU_USARTxRST (x=0,1): reset USART
      \arg        RCU_WWDGTRST: reset WWDGT
      \arg        RCU_I2CxRST (x=0,1): reset I2C
      \arg        RCU_PMURST: reset PMU
    \param[out] none
    \retval     none
*/
void rcu_periph_reset_disable(rcu_periph_reset_enum periph_reset)
{
    RCU_REG_VAL(periph_reset) &= ~BIT(RCU_BIT_POS(periph_reset));
}
 
/*!
    \brief      reset the BKP
    \param[in]  none
    \param[out] none
    \retval     none
*/
void rcu_bkp_reset_enable(void)
{
    RCU_BDCTL |= RCU_BDCTL_BKPRST;
}
 
/*!
    \brief      disable the BKP reset
    \param[in]  none
    \param[out] none
    \retval     none
*/
void rcu_bkp_reset_disable(void)
{
    RCU_BDCTL &= ~RCU_BDCTL_BKPRST;
}
 
/*!
    \brief      configure the system clock source
    \param[in]  ck_sys: system clock source select
                only one parameter can be selected which is shown as below:
      \arg        RCU_CKSYSSRC_IRC8M: select CK_IRC8M as the CK_SYS source
      \arg        RCU_CKSYSSRC_HXTAL: select CK_HXTAL as the CK_SYS source
      \arg        RCU_CKSYSSRC_PLL: select CK_PLL as the CK_SYS source
    \param[out] none
    \retval     none
*/
void rcu_system_clock_source_config(uint32_t ck_sys)
{
    uint32_t cksys_source = 0U;
    cksys_source = RCU_CFG0;
    /* reset the SCS bits and set according to ck_sys */
    cksys_source &= ~RCU_CFG0_SCS;
    RCU_CFG0 = (ck_sys | cksys_source);
}
 
/*!
    \brief      get the system clock source
    \param[in]  none
    \param[out] none
    \retval     which clock is selected as CK_SYS source
      \arg        RCU_SCSS_IRC8M: select CK_IRC8M as the CK_SYS source
      \arg        RCU_SCSS_HXTAL: select CK_HXTAL as the CK_SYS source
      \arg        RCU_SCSS_PLL: select CK_PLL as the CK_SYS source
*/
uint32_t rcu_system_clock_source_get(void)
{
    return (RCU_CFG0 & RCU_CFG0_SCSS);
}
 
/*!
    \brief      configure the AHB clock prescaler selection
    \param[in]  ck_ahb: AHB clock prescaler selection
                only one parameter can be selected which is shown as below:
      \arg        RCU_AHB_CKSYS_DIVx, x=1, 2, 4, 8, 16, 64, 128, 256, 512
    \param[out] none
    \retval     none
*/
void rcu_ahb_clock_config(uint32_t ck_ahb)
{
    uint32_t ahbpsc = 0U;
    ahbpsc = RCU_CFG0;
    /* reset the AHBPSC bits and set according to ck_ahb */
    ahbpsc &= ~RCU_CFG0_AHBPSC;
    RCU_CFG0 = (ck_ahb | ahbpsc);
}
 
/*!
    \brief      configure the APB1 clock prescaler selection
    \param[in]  ck_apb1: APB1 clock prescaler selection
                only one parameter can be selected which is shown as below:
      \arg        RCU_APB1_CKAHB_DIV1: select CK_AHB as CK_APB1
      \arg        RCU_APB1_CKAHB_DIV2: select CK_AHB/2 as CK_APB1
      \arg        RCU_APB1_CKAHB_DIV4: select CK_AHB/4 as CK_APB1
      \arg        RCU_APB1_CKAHB_DIV8: select CK_AHB/8 as CK_APB1
      \arg        RCU_APB1_CKAHB_DIV16: select CK_AHB/16 as CK_APB1
    \param[out] none
    \retval     none
*/
void rcu_apb1_clock_config(uint32_t ck_apb1)
{
    uint32_t apb1psc = 0U;
    apb1psc = RCU_CFG0;
    /* reset the APB1PSC and set according to ck_apb1 */
    apb1psc &= ~RCU_CFG0_APB1PSC;
    RCU_CFG0 = (ck_apb1 | apb1psc);
}
 
/*!
    \brief      configure the APB2 clock prescaler selection
    \param[in]  ck_apb2: APB2 clock prescaler selection
                only one parameter can be selected which is shown as below:
      \arg        RCU_APB2_CKAHB_DIV1: select CK_AHB as CK_APB2
      \arg        RCU_APB2_CKAHB_DIV2: select CK_AHB/2 as CK_APB2
      \arg        RCU_APB2_CKAHB_DIV4: select CK_AHB/4 as CK_APB2
      \arg        RCU_APB2_CKAHB_DIV8: select CK_AHB/8 as CK_APB2
      \arg        RCU_APB2_CKAHB_DIV16: select CK_AHB/16 as CK_APB2
    \param[out] none
    \retval     none
*/
void rcu_apb2_clock_config(uint32_t ck_apb2)
{
    uint32_t apb2psc = 0U;
    apb2psc = RCU_CFG0;
    /* reset the APB2PSC and set according to ck_apb2 */
    apb2psc &= ~RCU_CFG0_APB2PSC;
    RCU_CFG0 = (ck_apb2 | apb2psc);
}
 
/*!
    \brief      configure the ADC clock prescaler selection
    \param[in]  ck_adc: ADC clock prescaler selection, refer to rcu_adc_clock_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_ADCCK_IRC28M_DIV2: select CK_IRC28M/2 as CK_ADC
      \arg        RCU_ADCCK_IRC28M: select CK_IRC28M as CK_ADC
      \arg        RCU_ADCCK_APB2_DIV2: select CK_APB2/2 as CK_ADC
      \arg        RCU_ADCCK_AHB_DIV3: select CK_AHB/3 as CK_ADC
      \arg        RCU_ADCCK_APB2_DIV4: select CK_APB2/4 as CK_ADC
      \arg        RCU_ADCCK_AHB_DIV5: select CK_AHB/5 as CK_ADC
      \arg        RCU_ADCCK_APB2_DIV6: select CK_APB2/6 as CK_ADC
      \arg        RCU_ADCCK_AHB_DIV7: select CK_AHB/7 as CK_ADC
      \arg        RCU_ADCCK_APB2_DIV8: select CK_APB2/8 as CK_ADC
      \arg        RCU_ADCCK_AHB_DIV9: select CK_AHB/9 as CK_ADC
    \param[out] none
    \retval     none
*/
void rcu_adc_clock_config(rcu_adc_clock_enum ck_adc)
{
    /* reset the ADCPSC, ADCSEL, IRC28MDIV bits */
    RCU_CFG0 &= ~RCU_CFG0_ADCPSC;
    RCU_CFG2 &= ~(RCU_CFG2_ADCSEL | RCU_CFG2_IRC28MDIV | RCU_CFG2_ADCPSC2);
 
    /* set the ADC clock according to ck_adc */
    switch(ck_adc){
    case RCU_ADCCK_IRC28M_DIV2:
        RCU_CFG2 &= ~RCU_CFG2_IRC28MDIV;
        RCU_CFG2 &= ~RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_IRC28M:
        RCU_CFG2 |= RCU_CFG2_IRC28MDIV;
        RCU_CFG2 &= ~RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_APB2_DIV2:
        RCU_CFG0 |= RCU_ADC_CKAPB2_DIV2;
        RCU_CFG2 |= RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_AHB_DIV3:
        RCU_CFG0 |= RCU_ADC_CKAPB2_DIV2;
        RCU_CFG2 |= RCU_CFG2_ADCPSC2;
        RCU_CFG2 |= RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_APB2_DIV4:
        RCU_CFG0 |= RCU_ADC_CKAPB2_DIV4;
        RCU_CFG2 |= RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_AHB_DIV5: 
        RCU_CFG0 |= RCU_ADC_CKAPB2_DIV4;
        RCU_CFG2 |= RCU_CFG2_ADCPSC2;
        RCU_CFG2 |= RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_APB2_DIV6: 
        RCU_CFG0 |= RCU_ADC_CKAPB2_DIV6;
        RCU_CFG2 |= RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_AHB_DIV7: 
        RCU_CFG0 |= RCU_ADC_CKAPB2_DIV6;
        RCU_CFG2 |= RCU_CFG2_ADCPSC2;
        RCU_CFG2 |= RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_APB2_DIV8: 
        RCU_CFG0 |= RCU_ADC_CKAPB2_DIV8;
        RCU_CFG2 |= RCU_CFG2_ADCSEL;
        break;
    case RCU_ADCCK_AHB_DIV9: 
        RCU_CFG0 |= RCU_ADC_CKAPB2_DIV8;
        RCU_CFG2 |= RCU_CFG2_ADCPSC2;
        RCU_CFG2 |= RCU_CFG2_ADCSEL;
        break;
    default:
        break;
    }
}
 
/*!
    \brief      configure the CK_OUT clock source and divider
    \param[in]  ckout_src: CK_OUT clock source selection
                only one parameter can be selected which is shown as below:
      \arg        RCU_CKOUTSRC_NONE: no clock selected
      \arg        RCU_CKOUTSRC_IRC28M: IRC28M selected
      \arg        RCU_CKOUTSRC_IRC40K: IRC40K selected
      \arg        RCU_CKOUTSRC_LXTAL: LXTAL selected
      \arg        RCU_CKOUTSRC_CKSYS: CKSYS selected
      \arg        RCU_CKOUTSRC_IRC8M: IRC8M selected
      \arg        RCU_CKOUTSRC_HXTAL: HXTAL selected
      \arg        RCU_CKOUTSRC_CKPLL_DIV1: CK_PLL selected
      \arg        RCU_CKOUTSRC_CKPLL_DIV2: CK_PLL/2 selected
    \param[in]  ckout_div: CK_OUT divider 
      \arg        RCU_CKOUT_DIVx(x=1,2,4,8,16,32,64,128): CK_OUT is divided by x
    \param[out] none
    \retval     none
*/
void rcu_ckout_config(uint32_t ckout_src, uint32_t ckout_div)
{
    uint32_t ckout = 0U;
    ckout = RCU_CFG0;
    /* reset the CKOUTSEL, CKOUTDIV and PLLDV bits and set according to ckout_src and ckout_div */
    ckout &= ~(RCU_CFG0_CKOUTSEL | RCU_CFG0_CKOUTDIV | RCU_CFG0_PLLDV);
    RCU_CFG0 = (ckout | ckout_src | ckout_div);
}
 
/*!
    \brief      configure the PLL clock source selection and PLL multiply factor
    \param[in]  pll_src: PLL clock source selection
                only one parameter can be selected which is shown as below:
      \arg        RCU_PLLSRC_IRC8M_DIV2: select CK_IRC8M/2 as PLL source clock
      \arg        RCU_PLLSRC_HXTAL: select HXTAL as PLL source clock
    \param[in]  pll_mul: PLL multiply factor
                only one parameter can be selected which is shown as below:
      \arg        RCU_PLL_MULx(x=2..32): PLL source clock * x
    \param[out] none
    \retval     none
*/
void rcu_pll_config(uint32_t pll_src, uint32_t pll_mul)
{
    RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF);
    RCU_CFG0 |= (pll_src | pll_mul);
}
 
/*!
    \brief      configure the USART clock source selection
    \param[in]  ck_usart: USART clock source selection
                only one parameter can be selected which is shown as below:
      \arg        RCU_USART0SRC_CKAPB2: CK_USART0 select CK_APB2
      \arg        RCU_USART0SRC_CKSYS: CK_USART0 select CK_SYS
      \arg        RCU_USART0SRC_LXTAL: CK_USART0 select CK_LXTAL
      \arg        RCU_USART0SRC_IRC8M: CK_USART0 select CK_IRC8M
    \param[out] none
    \retval     none
*/
void rcu_usart_clock_config(uint32_t ck_usart)
{
    /* reset the USART0SEL bits and set according to ck_usart */
    RCU_CFG2 &= ~RCU_CFG2_USART0SEL;
    RCU_CFG2 |= ck_usart;
}
 
/*!
    \brief      configure the RTC clock source selection
    \param[in]  rtc_clock_source: RTC clock source selection
                only one parameter can be selected which is shown as below:
      \arg        RCU_RTCSRC_NONE: no clock selected
      \arg        RCU_RTCSRC_LXTAL: CK_LXTAL selected as RTC source clock
      \arg        RCU_RTCSRC_IRC40K: CK_IRC40K selected as RTC source clock
      \arg        RCU_RTCSRC_HXTAL_DIV32: CK_HXTAL/32 selected as RTC source clock
    \param[out] none
    \retval     none
*/
void rcu_rtc_clock_config(uint32_t rtc_clock_source)
{
    /* reset the RTCSRC bits and set according to rtc_clock_source */
    RCU_BDCTL &= ~RCU_BDCTL_RTCSRC;
    RCU_BDCTL |= rtc_clock_source;
}
 
/*!
    \brief      configure the HXTAL divider used as input of PLL
    \param[in]  hxtal_prediv: HXTAL divider used as input of PLL
                only one parameter can be selected which is shown as below:
      \arg        RCU_PLL_PREDVx(x=1..16): HXTAL divided x used as input of PLL
    \param[out] none
    \retval     none
*/
void rcu_hxtal_prediv_config(uint32_t hxtal_prediv)
{
    uint32_t prediv = 0U;
    prediv = RCU_CFG1;
    /* reset the PREDV bits and set according to hxtal_prediv */
    prediv &= ~RCU_CFG1_PREDV;
    RCU_CFG1 = (prediv | hxtal_prediv);
}
 
/*!
    \brief      configure the LXTAL drive capability
    \param[in]  lxtal_dricap: drive capability of LXTAL
                only one parameter can be selected which is shown as below:
      \arg        RCU_LXTAL_LOWDRI: lower driving capability
      \arg        RCU_LXTAL_MED_LOWDRI: medium low driving capability
      \arg        RCU_LXTAL_MED_HIGHDRI: medium high driving capability
      \arg        RCU_LXTAL_HIGHDRI: higher driving capability
    \param[out] none
    \retval     none
*/
void rcu_lxtal_drive_capability_config(uint32_t lxtal_dricap)
{
    /* reset the LXTALDRI bits and set according to lxtal_dricap */
    RCU_BDCTL &= ~RCU_BDCTL_LXTALDRI;
    RCU_BDCTL |= lxtal_dricap;
}
 
/*!
    \brief      get the clock stabilization and periphral reset flags
    \param[in]  flag: the clock stabilization and periphral reset flags, refer to rcu_flag_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_FLAG_IRC40KSTB: IRC40K stabilization flag
      \arg        RCU_FLAG_LXTALSTB: LXTAL stabilization flag
      \arg        RCU_FLAG_IRC8MSTB: IRC8M stabilization flag
      \arg        RCU_FLAG_HXTALSTB: HXTAL stabilization flag
      \arg        RCU_FLAG_PLLSTB: PLL stabilization flag
      \arg        RCU_FLAG_IRC28MSTB: IRC28M stabilization flag
      \arg        RCU_FLAG_V12RST: V12 domain power reset flag
      \arg        RCU_FLAG_OBLRST: option byte loader reset flag
      \arg        RCU_FLAG_EPRST: external pin reset flag
      \arg        RCU_FLAG_PORRST: power reset flag
      \arg        RCU_FLAG_SWRST: software reset flag
      \arg        RCU_FLAG_FWDGTRST: free watchdog timer reset flag
      \arg        RCU_FLAG_WWDGTRST: window watchdog timer reset flag
      \arg        RCU_FLAG_LPRST: low-power reset flag
    \param[out] none
    \retval     FlagStatus: SET or RESET
*/
FlagStatus rcu_flag_get(rcu_flag_enum flag)
{
    if(RESET != (RCU_REG_VAL(flag) & BIT(RCU_BIT_POS(flag)))){
        return SET;
    }else{
        return RESET;
    }
}
 
/*!
    \brief      clear the reset flag
    \param[in]  none
    \param[out] none
    \retval     none
*/
void rcu_all_reset_flag_clear(void)
{
    RCU_RSTSCK |= RCU_RSTSCK_RSTFC;
}
 
/*!
    \brief      get the clock stabilization interrupt and ckm flags
    \param[in]  int_flag: interrupt and ckm flags, refer to rcu_int_flag_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_INT_FLAG_IRC40KSTB: IRC40K stabilization interrupt flag
      \arg        RCU_INT_FLAG_LXTALSTB: LXTAL stabilization interrupt flag
      \arg        RCU_INT_FLAG_IRC8MSTB: IRC8M stabilization interrupt flag
      \arg        RCU_INT_FLAG_HXTALSTB: HXTAL stabilization interrupt flag
      \arg        RCU_INT_FLAG_PLLSTB: PLL stabilization interrupt flag
      \arg        RCU_INT_FLAG_IRC28MSTB: IRC28M stabilization interrupt flag
      \arg        RCU_INT_FLAG_CKM: HXTAL clock stuck interrupt flag
    \param[out] none
    \retval     FlagStatus: SET or RESET
*/
FlagStatus rcu_interrupt_flag_get(rcu_int_flag_enum int_flag)
{
    if(RESET != (RCU_REG_VAL(int_flag) & BIT(RCU_BIT_POS(int_flag)))){
        return SET;
    }else{
        return RESET;
    }
}
 
/*!
    \brief      clear the interrupt flags
    \param[in]  int_flag_clear: clock stabilization and stuck interrupt flags clear, refer to rcu_int_flag_clear_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_INT_FLAG_IRC40KSTB_CLR: IRC40K stabilization interrupt flag clear
      \arg        RCU_INT_FLAG_LXTALSTB_CLR: LXTAL stabilization interrupt flag clear
      \arg        RCU_INT_FLAG_IRC8MSTB_CLR: IRC8M stabilization interrupt flag clear
      \arg        RCU_INT_FLAG_HXTALSTB_CLR: HXTAL stabilization interrupt flag clear
      \arg        RCU_INT_FLAG_PLLSTB_CLR: PLL stabilization interrupt flag clear
      \arg        RCU_INT_FLAG_IRC28MSTB_CLR: IRC28M stabilization interrupt flag clear
      \arg        RCU_INT_FLAG_CKM_CLR: clock stuck interrupt flag clear
    \param[out] none
    \retval     none
*/
void rcu_interrupt_flag_clear(rcu_int_flag_clear_enum int_flag_clear)
{
    RCU_REG_VAL(int_flag_clear) |= BIT(RCU_BIT_POS(int_flag_clear));
}
 
/*!
    \brief      enable the stabilization interrupt
    \param[in]  stab_int: clock stabilization interrupt, refer to rcu_int_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_INT_IRC40KSTB: IRC40K stabilization interrupt enable
      \arg        RCU_INT_LXTALSTB: LXTAL stabilization interrupt enable
      \arg        RCU_INT_IRC8MSTB: IRC8M stabilization interrupt enable
      \arg        RCU_INT_HXTALSTB: HXTAL stabilization interrupt enable
      \arg        RCU_INT_PLLSTB: PLL stabilization interrupt enable
      \arg        RCU_INT_IRC28MSTB: IRC28M stabilization interrupt enable
    \param[out] none
    \retval     none
*/
void rcu_interrupt_enable(rcu_int_enum stab_int)
{
    RCU_REG_VAL(stab_int) |= BIT(RCU_BIT_POS(stab_int));
}
 
 
/*!
    \brief      disable the stabilization interrupt
    \param[in]  stab_int: clock stabilization interrupt, refer to rcu_int_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_INT_IRC40KSTB: IRC40K stabilization interrupt disable
      \arg        RCU_INT_LXTALSTB: LXTAL stabilization interrupt disable
      \arg        RCU_INT_IRC8MSTB: IRC8M stabilization interrupt disable
      \arg        RCU_INT_HXTALSTB: HXTAL stabilization interrupt disable
      \arg        RCU_INT_PLLSTB: PLL stabilization interrupt disable
      \arg        RCU_INT_IRC28MSTB: IRC28M stabilization interrupt disable
    \param[out] none
    \retval     none
*/
void rcu_interrupt_disable(rcu_int_enum stab_int)
{
    RCU_REG_VAL(stab_int) &= ~BIT(RCU_BIT_POS(stab_int));
}
 
/*!
    \brief      wait until oscillator stabilization flags is SET
    \param[in]  osci: oscillator types, refer to rcu_osci_type_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_HXTAL: HXTAL
      \arg        RCU_LXTAL: LXTAL
      \arg        RCU_IRC8M: IRC8M
      \arg        RCU_IRC28M: IRC28M
      \arg        RCU_IRC40K: IRC40K
      \arg        RCU_PLL_CK: PLL
    \param[out] none
    \retval     ErrStatus: SUCCESS or ERROR
*/
ErrStatus rcu_osci_stab_wait(rcu_osci_type_enum osci)
{
    uint32_t stb_cnt = 0U;
    ErrStatus reval = ERROR;
    FlagStatus osci_stat = RESET;
    switch(osci){
    case RCU_HXTAL:
         /* wait until HXTAL is stabilization and osci_stat is not more than timeout */
        while((RESET == osci_stat) && (HXTAL_STARTUP_TIMEOUT != stb_cnt)){
            osci_stat = rcu_flag_get(RCU_FLAG_HXTALSTB);
            stb_cnt++;
        }
        /* check whether flag is set or not */
        if(RESET != rcu_flag_get(RCU_FLAG_HXTALSTB)){
            reval = SUCCESS;
        }
        break;
        
    /* wait LXTAL stable */
    case RCU_LXTAL:
        while((RESET == osci_stat) && (LXTAL_STARTUP_TIMEOUT != stb_cnt)){
            osci_stat = rcu_flag_get(RCU_FLAG_LXTALSTB);
            stb_cnt++;
        }
        /* check whether flag is set or not */
        if(RESET != rcu_flag_get(RCU_FLAG_LXTALSTB)){
            reval = SUCCESS;
        }
        break;
 
    /* wait IRC8M stable */
    case RCU_IRC8M:
        while((RESET == osci_stat) && (IRC8M_STARTUP_TIMEOUT != stb_cnt)){
            osci_stat = rcu_flag_get(RCU_FLAG_IRC8MSTB);
            stb_cnt++;
        }
        /* check whether flag is set or not */
        if(RESET != rcu_flag_get(RCU_FLAG_IRC8MSTB)){
            reval = SUCCESS;
        }
        break;
 
    /* wait IRC28M stable */
    case RCU_IRC28M:
        while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
            osci_stat = rcu_flag_get(RCU_FLAG_IRC28MSTB);
            stb_cnt++;
        }
        /* check whether flag is set or not */
        if(RESET != rcu_flag_get(RCU_FLAG_IRC28MSTB)){
            reval = SUCCESS;
        }
        break;
        
    /* wait IRC40K stable */
    case RCU_IRC40K:
        while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
            osci_stat = rcu_flag_get(RCU_FLAG_IRC40KSTB);
            stb_cnt++;
        }
        /* check whether flag is set or not */
        if(RESET != rcu_flag_get(RCU_FLAG_IRC40KSTB)){
            reval = SUCCESS;
        }
        break;
 
    /* wait PLL stable */
    case RCU_PLL_CK:
        while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
            osci_stat = rcu_flag_get(RCU_FLAG_PLLSTB);
            stb_cnt++;
        }
        /* check whether flag is set or not */
        if(RESET != rcu_flag_get(RCU_FLAG_PLLSTB)){
            reval = SUCCESS;
        }
        break;
   
    default:
        break;
    }
    /* return value */
    return reval;
}
 
/*!
    \brief      turn on the oscillator
    \param[in]  osci: oscillator types, refer to rcu_osci_type_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_HXTAL: HXTAL
      \arg        RCU_LXTAL: LXTAL
      \arg        RCU_IRC8M: IRC8M
      \arg        RCU_IRC28M: IRC28M
      \arg        RCU_IRC40K: IRC40K
      \arg        RCU_PLL_CK: PLL
    \param[out] none
    \retval     none
*/
void rcu_osci_on(rcu_osci_type_enum osci)
{
    RCU_REG_VAL(osci) |= BIT(RCU_BIT_POS(osci));
}
 
/*!
    \brief      turn off the oscillator
    \param[in]  osci: oscillator types, refer to rcu_osci_type_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_HXTAL: HXTAL
      \arg        RCU_LXTAL: LXTAL
      \arg        RCU_IRC8M: IRC8M
      \arg        RCU_IRC28M: IRC28M
      \arg        RCU_IRC40K: IRC40K
      \arg        RCU_PLL_CK: PLL
    \param[out] none
    \retval     none
*/
void rcu_osci_off(rcu_osci_type_enum osci)
{
    RCU_REG_VAL(osci) &= ~BIT(RCU_BIT_POS(osci));
}
 
/*!
    \brief      enable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it
    \param[in]  osci: oscillator types, refer to rcu_osci_type_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_HXTAL: HXTAL
      \arg        RCU_LXTAL: LXTAL
    \param[out] none
    \retval     none
*/
void rcu_osci_bypass_mode_enable(rcu_osci_type_enum osci)
{
    uint32_t reg;
    switch(osci){
    case RCU_HXTAL:
        /* HXTALEN must be reset before enable the oscillator bypass mode */
        reg = RCU_CTL0;
        RCU_CTL0 &= ~RCU_CTL0_HXTALEN;
        RCU_CTL0 = (reg | RCU_CTL0_HXTALBPS);
        break;
    case RCU_LXTAL:
        /* LXTALEN must be reset before enable the oscillator bypass mode */
        reg = RCU_BDCTL;
        RCU_BDCTL &= ~RCU_BDCTL_LXTALEN;
        RCU_BDCTL = (reg | RCU_BDCTL_LXTALBPS);
        break;
    case RCU_IRC8M:
    case RCU_IRC28M:
    case RCU_IRC40K:
    case RCU_PLL_CK:
        break;
    default:
        break;
    }
}
 
/*!
    \brief      disable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it
    \param[in]  osci: oscillator types, refer to rcu_osci_type_enum
                only one parameter can be selected which is shown as below:
      \arg        RCU_HXTAL: HXTAL
      \arg        RCU_LXTAL: LXTAL
    \param[out] none
    \retval     none
*/
void rcu_osci_bypass_mode_disable(rcu_osci_type_enum osci)
{
    uint32_t reg;
    switch(osci){
    case RCU_HXTAL:
        /* HXTALEN must be reset before disable the oscillator bypass mode */
        reg = RCU_CTL0;
        RCU_CTL0 &= ~RCU_CTL0_HXTALEN;
        RCU_CTL0 = (reg & (~RCU_CTL0_HXTALBPS));
        break;
    case RCU_LXTAL:
        /* LXTALEN must be reset before disable the oscillator bypass mode */
        reg = RCU_BDCTL;
        RCU_BDCTL &= ~RCU_BDCTL_LXTALEN;
        RCU_BDCTL = (reg & (~RCU_BDCTL_LXTALBPS));
        break;
    case RCU_IRC8M:
    case RCU_IRC28M:
    case RCU_IRC40K:
    case RCU_PLL_CK:
        break;
    default:
        break;
    }
}
 
/*!
    \brief      enable the HXTAL clock monitor
    \param[in]  none
    \param[out] none
    \retval     none
*/
void rcu_hxtal_clock_monitor_enable(void)
{
    RCU_CTL0 |= RCU_CTL0_CKMEN;
}
 
/*!
    \brief      disable the HXTAL clock monitor
    \param[in]  none
    \param[out] none
    \retval     none
*/
void rcu_hxtal_clock_monitor_disable(void)
{
    RCU_CTL0 &= ~RCU_CTL0_CKMEN;
}
 
/*!
    \brief      set the IRC8M adjust value
    \param[in]  irc8m_adjval: IRC8M adjust value, must be between 0 and 0x1F
    \param[out] none
    \retval     none
*/
void rcu_irc8m_adjust_value_set(uint8_t irc8m_adjval)
{
    uint32_t adjust = 0U;
    adjust = RCU_CTL0;
    /* reset the IRC8MADJ bits and set according to irc8m_adjval */
    adjust &= ~RCU_CTL0_IRC8MADJ;
    RCU_CTL0 = (adjust | (((uint32_t)irc8m_adjval)<<3));
}
 
/*!
    \brief      set the IRC28M adjust value
    \param[in]  irc28m_adjval: IRC28M adjust value, must be between 0 and 0x1F
    \param[out] none
    \retval     none
*/
void rcu_irc28m_adjust_value_set(uint8_t irc28m_adjval)
{
    uint32_t adjust = 0U;
    adjust = RCU_CTL1;
    /* reset the IRC28MADJ bits and set according to irc28m_adjval */
    adjust &= ~RCU_CTL1_IRC28MADJ;
    RCU_CTL1 = (adjust | (((uint32_t)irc28m_adjval)<<3));
}
 
/*!
    \brief      unlock the voltage key
    \param[in]  none
    \param[out] none
    \retval     none
*/
void rcu_voltage_key_unlock(void)
{
    /* reset the KEY bits and set 0x1A2B3C4D */
    RCU_VKEY &= ~RCU_VKEY_KEY;
    RCU_VKEY |= RCU_VKEY_UNLOCK;
}
 
/*!
    \brief      set voltage in deep sleep mode
    \param[in]  dsvol: deep sleep mode voltage
                only one parameter can be selected which is shown as below:
      \arg        RCU_DEEPSLEEP_V_1_0: the core voltage is 1.0V
      \arg        RCU_DEEPSLEEP_V_0_9: the core voltage is 0.9V
      \arg        RCU_DEEPSLEEP_V_0_8: the core voltage is 0.8V
      \arg        RCU_DEEPSLEEP_V_1_2: the core voltage is 1.2V
    \param[out] none
    \retval     none
*/
void rcu_deepsleep_voltage_set(uint32_t dsvol)
{
    /* reset the DSLPVS bits and set according to dsvol */
    RCU_DSV &= ~RCU_DSV_DSLPVS;
    RCU_DSV |= dsvol;
}
 
/*!
    \brief      get the system clock, bus and peripheral clock frequency
    \param[in]  clock: the clock frequency which to get
                only one parameter can be selected which is shown as below:
      \arg        CK_SYS: system clock frequency
      \arg        CK_AHB: AHB clock frequency
      \arg        CK_APB1: APB1 clock frequency
      \arg        CK_APB2: APB2 clock frequency
      \arg        CK_ADC: ADC clock frequency
      \arg        CK_USART: USART0 clock frequency
    \param[out] none
    \retval     clock frequency of system, AHB, APB1, APB2, ADC or USRAT0
*/
uint32_t rcu_clock_freq_get(rcu_clock_freq_enum clock)
{
    uint32_t sws = 0U, adcps = 0U, adcps2 = 0U, ck_freq = 0U;
    uint32_t cksys_freq = 0U, ahb_freq = 0U, apb1_freq = 0U, apb2_freq = 0U;
    uint32_t adc_freq = 0U, usart_freq = 0U;
    uint32_t pllmf = 0U, pllmf4 = 0U, pllsel = 0U, prediv = 0U, idx = 0U, clk_exp = 0U;
    /* exponent of AHB, APB1 and APB2 clock divider */
    const uint8_t ahb_exp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
    const uint8_t apb1_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4};
    const uint8_t apb2_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4};
 
    sws = GET_BITS(RCU_CFG0, 2, 3);
    switch(sws){
    /* IRC8M is selected as CK_SYS */
    case SEL_IRC8M:
        cksys_freq = IRC8M_VALUE;
        break;
    /* HXTAL is selected as CK_SYS */
    case SEL_HXTAL:
        cksys_freq = HXTAL_VALUE;
        break;
    /* PLL is selected as CK_SYS */
    case SEL_PLL:
        /* get the value of PLLMF[3:0] */
        pllmf = GET_BITS(RCU_CFG0, 18, 21);
        pllmf4 = GET_BITS(RCU_CFG0, 27, 27);
        /* high 16 bits */
        if(1U == pllmf4){
            pllmf += 17U;
        }else if(15U == pllmf){
            pllmf = 16U;
        }else{
            pllmf += 2U;
        }
            
        /* PLL clock source selection, HXTAL or IRC8M/2 */
        pllsel = GET_BITS(RCU_CFG0, 16, 16);
        if(0U != pllsel){
            prediv = (GET_BITS(RCU_CFG1, 0, 3) + 1U);
            cksys_freq = (HXTAL_VALUE / prediv) * pllmf;
        }else{
            cksys_freq = (IRC8M_VALUE >> 1) * pllmf;
        }
        break;
    /* IRC8M is selected as CK_SYS */
    default:
        cksys_freq = IRC8M_VALUE;
        break;
    }
    /* calculate AHB clock frequency */
    idx = GET_BITS(RCU_CFG0, 4, 7);
    clk_exp = ahb_exp[idx];
    ahb_freq = cksys_freq >> clk_exp;
    
    /* calculate APB1 clock frequency */
    idx = GET_BITS(RCU_CFG0, 8, 10);
    clk_exp = apb1_exp[idx];
    apb1_freq = ahb_freq >> clk_exp;
    
    /* calculate APB2 clock frequency */
    idx = GET_BITS(RCU_CFG0, 11, 13);
    clk_exp = apb2_exp[idx];
    apb2_freq = ahb_freq >> clk_exp;
    
    /* return the clocks frequency */
    switch(clock){
    case CK_SYS:
        ck_freq = cksys_freq;
        break;
    case CK_AHB:
        ck_freq = ahb_freq;
        break;
    case CK_APB1:
        ck_freq = apb1_freq;
        break;
    case CK_APB2:
        ck_freq = apb2_freq;
        break;
    case CK_ADC:
        /* calculate ADC clock frequency */
        if(RCU_ADCSRC_AHB_APB2DIV != (RCU_CFG2 & RCU_CFG2_ADCSEL)){
            if(RCU_ADC_IRC28M_DIV1 != (RCU_CFG2 & RCU_CFG2_IRC28MDIV)){
                adc_freq = IRC28M_VALUE >> 1;
            }else{
                adc_freq = IRC28M_VALUE;
            }
        }else{
            /* ADC clock select CK_APB2 divided by 2/4/6/8 or CK_AHB divided by 3/5/7/9 */
            adcps = GET_BITS(RCU_CFG0, 14, 15);
            adcps2 = GET_BITS(RCU_CFG2, 31, 31);
            switch(adcps){
            case 0:
                if(0U == adcps2){
                   adc_freq = apb2_freq / 2U;
                }else{
                   adc_freq = ahb_freq / 3U;
                }
                break;
            case 1:
                if(0U == adcps2){
                   adc_freq = apb2_freq / 4U;
                }else{
                   adc_freq = ahb_freq / 5U;
                }
                break;
            case 2:
                if(0U == adcps2){
                   adc_freq = apb2_freq / 6U;
                }else{
                   adc_freq = ahb_freq / 7U;
                }
                break;
            case 3:
                if(0U == adcps2){
                   adc_freq = apb2_freq / 8U;
                }else{
                   adc_freq = ahb_freq / 9U;
                }
                break;
            default:
                break;
            }
        }
        ck_freq = adc_freq;
        break;
    case CK_USART:
        /* calculate USART0 clock frequency */
        if(RCU_USART0SRC_CKAPB2 == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
            usart_freq = apb2_freq;
        }else if(RCU_USART0SRC_CKSYS == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
            usart_freq = cksys_freq;
        }else if(RCU_USART0SRC_LXTAL == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
            usart_freq = LXTAL_VALUE;
        }else if(RCU_USART0SRC_IRC8M == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
            usart_freq = IRC8M_VALUE;
        }else{
        }
        ck_freq = usart_freq;
        break;
    default:
        break;
    }
    return ck_freq;
}